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MANAGED BY THE TRANSPORTATION  RESEARCH BOARD (TRB)

This investigation  was completed  as part of the ITS-IDEA Program which is one of three IDEA programs
managed by the Transportation  Research Board (TRB)  to foster innovations  in surface transportation.  It
focuses on products  and result for the development  and deployment  of intelligent  transportation  systems (ITS),
in support  of the U.S. Department  of Transportation’s  national ITS program plan. The other two IDEA
programs areas are Transit-IDEA,  which focuses on products and results for transit practice in support  of the
Transit  Cooperative Research Program (TCRP), and NCHRP-IDEA,  which focuses on products and results  for
highway construction,  operation, and maintenance in support  of the National Cooperative Highway Research
Program (NCHRP). The three IDEA program areas are integrated to achieve the development  and testing of
nontraditional  and innovative  concepts,  methods and technologies,  including  conversion  technologies  from the
defense, aerospace, computer, and communication  sectors that are new to highway, transit,  intelligent, and
intermodal surface transportation  systems.
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EXECUTIVE SUMMARY
Information required to make intelligent driving decisions depends on many factors, changes continually, and must be
continually updated. Both during routine driving and emergency situations, Intelligent Transportation Systems (ITS) for
automated and driver-assisted control must know whether a vehicle is capable of performing a required maneuver
before implementing or proposing the maneuver; if information on which ITS decisions are based is inaccurate, the
system may fail to choose the safest action Much ITS research has focused on methods of making driving decisions
based on uncertain information. In addition, prior Advanced Vehicle Control System (AVCS) research has shown that
feedback of signals such as wheel slip and wheel slip angle can provide significant performance gains over control
systems currently used in some vehicles; however, such signals cannot be measured using current technology. This
project bridges the gap between proposed ITS decision-making methods and proposed ACVS by providing numerical
techniques for determining information necessary to make and implement intelligent driving decisions. The results
have application to ITS products for automated driving, emergency intervention, and driver safety aids. In addition, the
numerical techniques provide feedback signals that make implementation of AVCS feasible. This study demonstrates
that attention to the accuracy of decision information can result in superior ITS and AVCS system performance.

A crucial parameter governing vehicle motion is the tire/road-surface coefficient of friction. Vehicle stopping
distance, safe following distance, safe speed, and lateral maneuverability all depend on this uncontrollable parameter.
Road friction governs the tire forces, or forces that cause deceleration and traction and that prevent a vehicle from
“spinning” during a panic maneuver. While other important parameters governing vehicle motion can be measured
using transducers, there is currently no method to measure or otherwise determine road friction. In the absence of a
“road fiction sensor”, this project aims to estimate road friction based on measured vehicle motion. Figure 1 shows a
conceptual block diagram in which road friction and resulting decision and control parameters are estimated for ITS
decision logic and AVCS. The major components of this project appearing inside the dotted lines include a set of
transducers, an Extended Kalman Filter (EIW), a Bayesian Hypothesis Selection algorithm, and a Vehicle Parameter
Determination block. The EKF provides feedback signals that can be used in braking and tractive control systems.  The
filter outputs also include tire force estimates that are used in the Hypothesis Selection procedure to estimate road
friction from a set of possible values ranging from 0.25 (icy road) to 0.9 (dry asphalt). Road friction and vehicle motion
are used in the Vehicle Parameter Determination block to predict decision parameters. Decision logic can then be used
to command steering, braking, and throttle inputs that enact the vehicle control systems.

The IDEA investigation described here is a feasibility study conducted to develop and validate the EKF and Bayesian
Hypothesis Selection algorithms using both computer simulation and field test data. For the simulation study, noisy
transducer measurements are constructed from simulated vehicle motion. These measurements serve as inputs to the
EKF. Performance of the algorithms is assessed by comparing simulated vehicle motion and true road coefficient of
friction to estimates of these variables for a variety of vehicle steering and braking inputs. Results of this task
demonstrate excellent tracking ability of the EKF and Hypothesis Selection procedure for a broad range of simulated
vehicle inputs and road conditions. Figures 2 and 3 show example results of the EKF and road friction identification,
respectively, for a panic braking and steering maneuver on a variable friction road surface similar to what may be
encountered on a cold, icy day. Tracking ability of the EKF is excellent (Figure 2) and the road friction identification
procedure responds nearly instantly to sudden changes in road conditions (Figure 3). The study proved the EKF to be
robust to reasonably expected uncertainty in vehicle load, tire modeling, and center-of-gravity location, and worst-case
error in the road friction estimate when modeling uncertainties were assumed was 0.10. Example decision parameters,
such as stopping distance and brake power required to achieve a target speed were determined from road friction along
with typical uncertainties in these parameters. Performance benefits of proposed AVCS were assessed by simulation as
well. A simulated slip control braking system showed straight-line stopping distances up to 25% lower than a vehicle
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Field test data provide a low-cost method of verifying results of the simulation studies. Example EKF and road friction
identification results from processing field test data are shown in Figure 4. Figures 2 and 3 show algorithm
performance for severe inputs. It is necessary that the algorithms also perform well for modest steering and braking
inputs that are encountered during normal driving. Figure 4 shows road friction estimates and longitudinal force
estimates from field test data for a 0.37g straight line braking maneuver from 55 mph on a dry road surface. The same
maneuver was simulated on a road surface with p = 0.88. Consistency between simulation and test data results and
known typical values of road friction for dry asphalt indicate that road friction identified is reasonable for the test track
surface. The ability to process field test data collected from on-board transducers demonstrates that current sensing
technology can be used to implement the algorithms developed.

The conceptual IDEA product represented in Figure 1 includes on-board transducers and a microcomputer. Required
transducers include four wheel angular velocity tachometers, two accelerometers, two rate gyroscopes, a minimum of
one brake line pressure sensor, and a steering wheel angle sensor. A processor capable of five million floating-point
operations per second is required to implement the numerical techniques. This is requirement is satisfied by current
personal computer technology. The project findings clearly demonstrate the ability of the numerical techniques
developed to provide information necessary for ITS and AVCS product development.
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IDEA PRODUCT
Intelligent Transportation Systems (ITS) require dynamic information concerning safe vehicle operation during every
driving situation; a system must know whether a vehicle is capable of performing a required maneuver before making
driving decisions. This project provides quantitative techniques for determining information necessary to make and
implement intelligent driving decisions. The results have application to the following:

1) Developing ITS products for automated driving, emergency intervention, and driver safety aids; and

2) Implementing AVCS to improve vehicle stability and drivability.

Processing algorithms developed in this project determine road coefficient of friction. Road friction can be used to
estimate other parameters, such as stopping distance, brake power required to stop, and vehicle maneuverability, required to
make driving decisions. In addition, the algorithms provide feedback signals that can be used to design AVCS that increase
vehicle stability and handling qualities.

CONCEPT AND INNOVATION
The numerical procedures developed in this project are based on extended Kalman filtering, a nonlinear adaptive filtering
method (1). Similar methods have been used successfully in analogous problems concerning modeling of aircraft dynamics
(2,3). The adaptive filter requires a dynamic model of the vehicle and data that is gathered continually from sensors on board
the vehicle. Ground vehicle motion depends largely on the tire forces, or forces that cause deceleration and traction and that
can prevent a vehicle from losing lateral stability or “spinning” during severe maneuvers. The tire forces are nonlinear, and
they depend on uncontrollable factors, such as tire/road-surface coefficient of friction (u), tire pressure and wear, and vehicle
loads. While the latter parameters can be measured using standard sensors, there is currently no way to measure or otherwise
determine u. In this project, the tire forces and motion are determined using extended Kalman filtering and measurements
from standard off-the-shelf sensors. The forces and motion serve as inputs to a Bayesian Hypothesis Selection procedure that
compares the estimated forces and motion to outputs of a tire force model to determine the correct u from a set of
hypothesized values. Road coefficient of friction is extremely important to predicting stopping distances, safe following
distances, and maneuverability; given an estimate of CL, information required to make on-the-spot driving decisions can be
determined.

This project is unique in its focus on providing high-quality information for decision-making and feedback control
using transducers and computer technology that are currently available. While research by other investigators has considered
ITS decision-making methods (43, there is little current research on providing the information required to make intelligent
driving decisions. Such information depends on many factors, changes continually, and must be continually updated. A “road
friction transducer”, while useful for many ITS products, would be difficult to design at best. The methods developed in this
project provide the necessary road friction estimate without requiring a road friction transducer and at the same time supply
signals required for AVCS. Prior AVCS research has shown that feedback signals such as wheel slip, wheel slip angle, and
vehicle velocity give performance gains over control systems currently used in some vehicles (6,7,8); however, these signals
also cannot be measured using current sensor technology mounted on-board the vehicle. The EKF also provides such signals
making it possible to commercially implement vehicle control systems that increase safety and maneuverability.

INVESTIGATION
Two project stages were conducted as part of this investigation. The objective of Stage 1 was to develop and validate
adaptive filtering algorithms using computer simulation. An eight degree-of-freedom model of a 1990 Ford Taurus (9)
and an analytic tire force model (10) were used to simulate true vehicle motion from which noisy sensor measurement
histories were constructed. The measurement histories served as inputs to the estimation algorithm. A variety of
steering and braking maneuvers ranging from modest to severe were simulated to determine EKF and road friction
estimation performance over a broad range of driver inputs, A study was conducted for open-loop operation of a
braking system that incorporates the algorithms to assess robustness to reasonably expected uncertainties in the system
model. Examples of parameters required for ITS decision making were determined along with typical parameter
uncertainties. Potential benefits of the algorithms developed to advanced feedback control were assessed by quantifying
performance gains in simulated braking control systems that incorporate the algorithms developed.

Stage 2 of the project involved a final verification task using recent field test data for a 1994 Ford Taurus from the
National Highway Traffic Safety Administration’s Vehicle Research and Testing Center (VRTC) in East Liberty, Ohio.
For this task, the computer model of the vehicle was replaced with actual field test data and the algorithms were verified
to the extent possible using that data. This stage provided a low cost method of verification using existing data before
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angle. The road friction coefficient is µ = 0.3, 0 # t < 0.5 sec, µ = 0.85, 0.5 # t < 1.5 sec, µ = 0.3, 1.5 # t < 2.25 sec, and µ =
0.5, 2.25 # t < 3.0 sec. The EKF slip, zip angle, and force estimates (dashed lines) approximate the actual trajectories (solid
lines) well, even in the face of abrupt changes in µ and severely nonlinear tire forces. The steering and braking inputs in
Figure 2 are severe, particularly for the low friction road surface, causing all four wheels to lock. Because it is important to
know vehicle parameters before an emergency situation ensues, it is important for the EKF to perform well during normal
driving as a vehicle performs routine stops and turns. Figure 7 shows example EKF results for less severe braking (0.25g
longitudinal deceleration) and steering (0.45g peak lateral acceleration) on a µ = 0.825 road surface. The inputs correspond
roughly to a turn and stop maneuver from highway speed, as in exiting a freeway onto an off ramp. Tracking of the actual
forces by the EKF shown in Figures 7a and 7b is excellent. The results presented in Figures 2 and 7 represent two extremes
of maneuvering considered for evaluation of the EKF; inputs between these extremes were considered as well, with excellent
estimation results . Force, slip, and slip angle trajectories provided by the EKF are used below to determine µ.

Evaluation of road coefficient of friction estimation
The road coefficient (µ) identification procedure requires a covariance matrix, P, hypothesis set, and initial estimates of
conditional probabilities, Pr[µj |Fk ]. Diagonal components of P serve as weighting factors, enabling the user
emphasize particular components of the tire force vector in the selection algorithm. For instance, during pure braking, P
= diag([0.0l 0.01 0.01 0.01 1.25 1.25]) places equal emphasis on each on the longitudinal forces and less emphasis on
the per-axle lateral forces. For pure steering maneuvers, P is selected to place more emphasis on lateral forces. The
hypothesis set is µ = [0.25 to 0.85] in 0.05 increments. Computation burden per hypothesis is small, and a hypothesis
set with small increments produced good results. Equal probability of each hypothesis being true was selected at t = 0,
i.e., there is no a prior knowledge of µ. The conditional probabilities where not allowed to drop below ε = 0.00001,
enabling the algorithm to respond quickly to sudden changes in µ.

Figure 8 shows the road coefficient of friction estimate, normal forces, and Pr[µj |Fk ] histories for the trajectory of
Fig. 2. Tracking of the actual road coefficient of friction is excellent. The condition probability (Pr[µj |Fk ]) histories
show that the algorithm quickly converges to two hypotheses around the actual p, while the remaining probabilities
become small. The algorithm responds instantly when u changes suddenly. Figure 7c shows identification results for
the more modest turn and stop maneuver. While convergence of the road friction estimate is slow, compared to the
severe maneuvering case, the algorithm does converge to within one hypothesis of the actual road friction, µ = 0.825.
The actual road friction here is modeled as a random constant whose mean value is 0.825, and the mean value does not
correspond to one of the hypothesized values. Primary importance for µ estimation during modest maneuvering is not
the settling time of convergence, but that the µ estimate represents actual road friction.

Figure 7 reveals limiting behavior of the road friction identification algorithm. While EKF performance is excellent
for all maneuvers considered, road friction identification ranges from very difficult, for extremely “small” inputs to very easy
for “large” inputs. The behavior can be explained in the context of Figure 9, which shows normalized longitudinal and lateral
forces as a function of µ based on an analytic tire force model (10). At low slip ratios and slip angles typical of small input
maneuvers, it is difficult to distinguish between curves of fixed µ, since the force-slip relationship is linear and is nearly
independent of µ. Hence, the µ identification algorithm performs very well above slip ratios of approximately 0.05 and has
some trouble distinguishing between hypotheses for smaller slip ratios. Similar behavior is apparent for pure steering inputs
that generate slip angles less than approximately 0.1 rad (Figure 9b). To further assess the µ identification algorithm, a
variety of steering and braking inputs were considered on a variety of simulated road surfaces. Figure 10 shows example
results. In Fig. 10a-d, actual values of µ match one of the hypothesized values and in Fig. 10e-f actual values of µ do not
match one of the hypothesized values. In Fig. 10a-d, the estimated µ converges to the actual value in all except one case, and
the worst case 5% settling time is 0.73 sec. In Fig. 10e-f, µ settles to a hypothesized value just greater than or just less than
the actual value; hence, the estimated µ is always within 9.05 (one hypothesis) of the actual µ. The single case that does not
converge can be explained in the context of the tire force curves, as the corresponding slip ratios are small (below 0.04).
At slightly higher slip ratios that are still below that corresponding to peak longitudinal force, the algorithm performs
well. µ identification for the pure steering maneuver exhibits a high settling time largely because the corresponding slip
angle response is slow; Figure 9b shows that for small slip angles, it is also difficult to distinguish between µ
hypotheses.

Modeling Requirements and Robustness
The µ identification procedure requires a vehicle model (for the EKF) and tire force model. The tire force model is
likely to be uncertain, as it depends on experimental and/or analytic modeling, and it can change over time with
uncertain tire pressure  and wear. Some vehicle model parameters are also likely to be uncertain, as vehicle load (mass)   
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depend on the number of passengers, fuel mass, and cargo mass. Uncertainties in vehicle load affect the center-of-gravity
location, sprung mass, and moment of inertia parameters given in Table 1. In the results presented above, the tire force model
used in the µ identification procedure was identical to the tire force model used to simulate vehicle motion, and the vehicle
parameters assumed in the simulation model matched the estimation model. A simple robustness study was conducted by
mismatching the simulation and estimation tire models and vehicle load. Significant mismatch in the tire model was
introduced by selecting a tire for the µ identification procedure that did not match that of the actual vehicle. In addition,
worst-case vehicle load uncertainty was introduced; the vehicle load assumed in the simulation corresponds to driver-only
conditions, and the estimation model assumed a fully loaded vehicle. Figure 11 shows the EKF results for the trajectory of
Figure 2 when these uncertainties are introduced. Load uncertainties are reflected in the mismatch between estimated
(dashed) and actual (solid) signals. The longitudinal force trajectories follow actual forces extremely well, while lateral force
estimates show a modest bias. All other estimated variables remain largely unaffected by the parameter uncertainties
considered.

Load uncertainty has the potential to cause significant performance robustness problems in road friction
identification because the procedure depends heavily on knowledge of the normal forces to normalize longitudinal and
lateral tire forces. A solution to these concerns is to include a static load sensor in the transducer set to measure the
static sprung mass load (msg). µ identification results in the face of tire model and load uncertainties are presented in
Figure 12. Two cases are considered in Figure 12. The dotted line shows the µ estimate for load and tire model
uncertainties, where the normal force estimate is based on the uncertain load (i.e., assuming no static load transducer).
The dashed line gives the µ estimate when the normal force is based on a transducer measurement of static load, while
other load parameters (center-of-gravity location, sprung mass, and moment of inertia) remain uncertain. Sensitivity of
the procedure to normal force uncertainties is significant at high values of µ, causing up to 0.15 error in the µ estimate
(dotted line). For errors in other load parameters and tire model error the µ estimate converges to within one hypothesis
of the actual value (dashed line).

AVCS Performance Benefits
State estimates from extended Kalman filtering provide feedback signals that can be used to design vehicle control systems
that are substantially different from current technology. Possible control systems include slip control tractive and braking
systems, tire force feedback systems, and full state feedback systems. In this study, performance benefits of such systems
over existing vehicle control system technology are considered. The emphasis of this task is not on control system design, but
on demonstrating possible performance gains if the EKF and µ identification algorithms were available to a controller.
Typical control benefits are assessed by comparing the performance of four braking systems: 1) no anti-lock braking system
(ABS) (open-loop braking system); 2) a vehicle with ABS that cycles between two slip values (ABS); 3) a vehicle with slip-
control braking, assuming feedback of perfect wheel slip signals and no disturbance inputs (PRYideal); and 4) a vehicle with
slip-control braking, assuming an EKF provides slip estimates for feedback (PID/EKF). The first system represents that
available on the majority of current vehicles. The second system is an idealization of ABS systems available as optional
equipment on some vehicles; because ABS operation is proprietary information, this system does not necessarily model a
particular ABS, but approximates typical ABS operation of cycling the brakes to avoid wheel lock. The ABS system modeled
here is idealized because perfect wheel slip signals are assumed to be available to determine incipient wheel lock. Real ABS
systems normally base this determination on wheel angular velocity. The third system represents the “ideal”, or best possible
performance for a given “slip control” braking system (SCBS), or system that seeks to control wheel slip to a certain value.
System 3 cannot be implemented, since slip cannot be measured directly. The last system represents achievable performance
using a stochastic slip control braking system modeled in Figure 1. Here, slip setpoints for the PID/EKF system are generated
based on a µ estimate and nominal tire model, and a simple PID controller (12) maintains the setpoint. For straight-line
braking, the setpoint corresponds to the peak slip value, or slip corresponding to maximum longitudinal force. Figure 13
shows an example of actual and estimated peak slip setpoints for a controlled braking maneuver on a µ = 0.5 road surface,
and straight line stopping distances from 55 mph for µ = 0.3 and µ = 0.85 are shown in Fig. 14. The peak slip estimates
approximate actual peak slip very well until the last 0.5 set of the trajectory, where velocity approaches zero and signal-to-
noise ratio in the slip estimate increases. Figure 14 shows that feedback of a slip estimate introduces no noticeable
performance degradation over an ideal SCBS. The PID/EKF stopping distances are 11% to 25% lower than those of systems
with no ABS, and 5.5 to 6.5% lower than the simulated ABS system, representing significant potential gains. Since the
simulated ABS system is based on cycling between two slip values and assumes slip is known without error, actual ABS may
not perform as well as the ABS simulated here, and performance gains of slip control systems may be higher.

Degrees of lateral maneuverability can be achieved in a SCBS by adjusting the slip setpoint; operating at the “peak
slip” maximizes longitudinal force at the expense of lateral force, while operating below the peak slip increases lateral
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force. Current ABS systems that cycle around peak slip can lose lateral stability in some situations. Figure 15 compares
the four braking control systems for a combined steering and braking maneuver on a µ = 0.85 road surface. The slip
setpoints for the PD controllers are adjusted to give similar maneuverability as the simulated ABS system. With no
control, the wheels lock, and lateral forces are extremely small. The ABS system loses stability for the emergency
maneuver considered. The PID systems are able to sustain the same lateral maneuverability as the ABS system with no
loss of stability, achieving peak longitudinal and lateral accelerations of approximately 0.6g. There is little difference
between the paths of the ideal and PID/EKF vehicles, indicating no loss in performance due to slip setpoint estimation
and slip estimate feedback. These results show possibilities for significant improvement in vehicle lateral stability using
AVCS that incorporate the numerical procedures developed.

A nominal ABS that cycles between two slip values is limited adjustability of lateral maneuverability. Achievable
ranges of lateral maneuverability are given in Fig, 16 for the PID/Ideal and PIINEKF systems and two different road
conditions. The tradeoff between longitudinal and lateral acceleration is determined by adjusting the slip setpoint as some
percent of the peak slip value estimated. Operating at “100 % peak slip” corresponds to maintaining a value of slip that
maximizes longitudinal force. At less than 100% peak slip, the slip setpoint is below the value that maximizes longitudinal
force, reducing available stopping force and increasing lateral forces. For each road surface, variations in longitudinal and
lateral accelerations are indicated by the small differences between the paths of the stochastic braking control system and the
ideal system. These plots demonstrate how well the vehicle can follow an intended path using an AVCS.

Decision Parameter Determination
Figure 13 gives an example of the type of information that can be derived knowing µ. Here, the value of slip corresponding to
peak longitudinal force, or “peak slip” is derived from a look up table given the EKF slip and slip angle estimates, the static
normal forces, and the µ estimate. The peak slip value can be used as a control setpoint for traction control , braking control ,
or stability augmentation. Other parameters can be derived from the µ estimate that play an important role in ITS decision-
making. This section gives examples of such parameters and their uncertainties.

Point-mass kinematics provides a simple means of estimating minimum stopping distance or safe velocity as a
function of µ and vehicle load; for a given braking control system, road coefficient of friction corresponds to a maximum
achievable deceleration, from which stopping distance from current velocity is predicted. When µ is known perfectly, the
maximum error in predicted stopping distance from highway speeds based on this method is 0.93 m, over a range of µ from
0.3 to 0.85; maximum error occurs at t = 0, and it was determined by simulating controlled braking maneuvers assuming
perfect feedback of slip signals. When µ is estimated, the error in minimum stopping distance estimate depends on the error
in the p estimate. Figure 17 shows the minimum stopping distance estimate (solid line) as a function of road friction for
velocities from 10 m/s to 25 m/s. The dashed lines represent uncertainties in the stopping distance estimate for uncertainty in
p estimate of _+.05 (one hypothesis). Another important parameter that can be  assessed based on the µ estimate is the brake
ratio, or measure of brake power required for a rear vehicle to avoid an accident with a front vehicle (4). Assuming a target
velocity, v, and an initial velocity vo, for the rear vehicle, the brake ratio can be defined as

br=   (8)

where d is the maximum achievable deceleration and ∆x is the separation distance between vehicles. d is linearly related to µ.
Figure 17b gives an example of brake ratio and uncertainty bands based on _+.05 error in the µ estimate for a vehicle
traveling at 55 mph approaching a vehicle traveling at 30 mph, for two separation distances. An ITS can  use information such
as that presented in Fig 17b to determine the probability of safely performing a braking maneuver or the safe vehicle velocity
required to minimize the probability of an accident. For example, on a low friction road (µ = 0.3), the brake ratio for ∆x = 75
m is between 0.77 and 1.05, indicating that there is a possibility of exceeding the total available braking power if a straight
line braking maneuver is performed. For the larger separation distance, just over half of the available braking power (between
0.46 and 0.63) is required to achieve the target velocity. Uncertainty intervals decrease with increasing road friction, as
indicated in the figure.

Stage 2 Results
Field test data were provided by VRTC for Stage 2 evaluation (13). All maneuvers were open-loop, fixed-input runs
conducted by VRTC as part of their standard vehicle testing and modeling procedures. A single straight-line braking
maneuver was provided from a late 1994 test data set, and straight line braking maneuvers ranging from 2 m/s 2 to the
maximum deceleration possible for the test vehicle (approx. 8.5 m/s2) were provided based on recent (August 1995) field
testing. Pure steering data provided by VRTC included ramped steering maneuver data and J-turn (constant steer

v2 – v0
2

2d∆x
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input) data. Severe combined braking and steering data also were provided. All data were collected from maneuvers on
dry asphalt; no data were available for wet pavement.

Since the simulation model is replaced by actual field test data for Stage 2 evaluation, time histories of actual
vehicle state and road friction do not exist for evaluating the EKF and µ estimate results. In the absence of actual
signals with which to compare estimated signals, the Stage 2 results must be judged based on consistency of the road
friction estimate to that expected for dry asphalt and for consistency with simulation results. For a sample of field test
cases, a simulation was conducted for identical inputs, assuming a true underlying road friction coefficient
approximately equal to that identified by processing field test data. The resulting simulated motion was compared to
field test data results. The hypothesis set for field test data processing was p = [0.25 to 0.9] in 0.05 increments, as
processing results indicated the possibility of friction coefficients greater than 0.85 for field test data. The field test
vehicle parameters are given in Table 1.

Pure braking results
Figure 4 shows the EKF tire force estimates and road friction estimates for a straight line braking maneuver from
highway speeds on dry asphalt2. The average and peak decelerations for this maneuver are 0.35g and 0.4g, respectively,
and road friction converges to 0.90. This maneuver is typical of normal braking from highway speeds in which the
wheel slip vs longitudinal force relationship remains in the linear region of the tire force curves (Fig. 9a). In the
absence of lateral inputs, lateral forces (not shown) are small. While the underlying road friction and tire forces for this
maneuver are unknown, results can be judged by simulating an identical maneuver on a high friction road surface and
comparing forces estimated from field test data to simulated forces. The dashed trajectories in Figure 4 provide
simulation results for identical inputs and a true underlying road friction of 0.88. The mean values of the simulated and
estimated longitudinal forces are nearly indistinguishable, indicating excellent EKF results. Table 2 summarizes the
ERR force estimate results for this run. Column 3 of Table 2 gives the correlation coefficient between simulated tire
forces histories and EKF force estimates from field test data processing. Road friction estimates for simulated and field
test data are 0.88 and 0.9, respectively. Measurement of road friction at similar test facilities on dry asphalt indicate
typical road friction values for dry asphalt of 0.85 to 1.0 (14). Figure 18 shows results of processing straight line
braking field test data for decelerations of 2 m/s2, 3 m/s2, 5 m/s2, 7.5 m/s2, and maximum deceleration achievable with
the test vehicle’s ARS system active. In each case, processing of field test data begins when the brakes are applied. The
transient response of the braking system is indicated by the time it takes for the forces to reach a steady-state value. The
steady-state value of longitudinal tire force estimates increases with deceleration, as expected. With the exception of
Figure 18e, slip ratios at each wheel (not shown) remain approximately constant. In Figure 18e, with the ARS system
active, the brakes begin to cycle on and off when the system detects incipient wheel lock, as reflected in the force
response. Road friction identification results are consistent with what is expected for dry asphalt, with the exception of
the 2 m/s2 (0.29) braking maneuver. Here, the tire forces are simply too small to distinguish road friction; this is
consistent with Stage 1 simulation findings, which indicated limitations to road friction identification for small tire
force inputs. As the braking input and resulting forces increase, the speed of the transient road friction response
improves.

TABLE 2 Comparison of simulation and field test data results for 0.35g braking
Variable Mean

Value,
simulation

Mean value,
field test data
estimate

Correlation
coefficient

Front left long, Force, Fxfl 1570 N 1572 N 0.99
Front right long, Force, Fxfr 1606 N 1609 N 0.99
Rear left long, Force, Fxrl 1306 N 1309 N 0.96
Rear right long, Force, Fxrr 898 N 903 N 0.98

Pure steering results
Figure 19 shows estimated lateral forces and road friction from field test data for a slowly increasing steering input at a
vehicle velocity of a proximately 17.5 m/s (39.1 mph) along with simulated forces and simulated road friction estimate
for the same inputs2. This maneuver was also conducted on dry asphalt. The simulated data assumed an underlying road
friction of µ = 0.88. The steering input for this maneuver is ramped to 1.36 rad (78 degrees) over the duration of the test
run. The correlation coefficients between simulated and estimated lateral tire forces are 0.98 and 0.92 respectively, for
the front and rear axles indicating good EKF performance. In both simulation and field test data results, the road
friction estimate convergence is slow because of the slow slip angle and lateral force response,
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revealing small steering input limitations to road friction estimation. The lateral acceleration reaches -0.4g at the time
road friction converges to 0.9. Figure 20 shows estimated road friction for more recent (June 1995) slowly increasing
steering input field test data at three velocities: 12 m/s (27 mph), 22 m/s (49 mph), and 32 m/s (72 mph). The steady-
state road friction estimates are 0.83,0.89, and 0.90. Figure 19 also shows estimated lateral forces and road friction for a
0.4g J-turn (constant steering input) at 11.2 m/s (25 mph). Again, agreement with road friction expected for dry asphalt
is good for all pure steering cases considered.

Combined braking and steering results
Figure 2 1 shows the EKF and road friction estimation results for hard braking and steering field test data near the
limits of vehicle capabilities (peak ax = 0.9g and peak a y = 0.8g). For the maneuver considered, the vehicle’s antilock
braking system is enacted, as indicated by the oscillatory brake line pressure measurements and resulting tire force
estimates. For the EKF simulation road friction was assumed to be 0.88. Correlation coefficients for the forces
simulated and those estimated from field test data given in Table 3 show excellent agreement between the simulation
and field test data for three of four longitudinal forces. For the simulated run (dashed lines) the front left wheel locks,
and the corresponding longitudinal tire force saturates. The lateral forces generated for field test data are greater in
magnitude than simulated lateral forces. Force and slip comparisons of simulated and field test results for identical
inputs indicate that either the actual road friction is higher than that assumed for simulation, or the tire force model
used in road friction identification is not accurate in predicting tire forces near the limit of vehicle performance. (The
peak accelerations for the simulation were ax = 0.8g and peak ay = 0.6g.)  Nevertheless, results of processing this test
run indicate good EKF performance and road friction identification results for severely nonlinear tire forces and
significant transients in the braking inputs.

TABLE 3 Comparison of simulation and field test data results for severe braking and turning
Variable Correlation

coefficient
Front left long, Force, Fxfl 0.31
Front right long, Force, Fxfr 0.98
Rear left long, Force, Fxrl 0.91
Rear right long, Force, Fxrr 0.95
Front per-axle lat force, Fyf 0.88
Rear per-axle lat force, Fyr 0.73

Computation, Sensing, and Modeling Requirements
The EKF requires 131K floating point operations (FLOPS) per sample time to propagate the state estimate (8 nonlinear
and 13 linear equations) and a 21 x 21 state covariance matrix using fourth-order Runge Kutta integration. The µ
identification algorithm requires 600 FLOPS per sample time per hypothesis, including calls to the analytic tire force
model to evaluate eq. 6. For 13 hypotheses, a total of approximately 139K FLOPS per sample time are required to
implement the EKF and µ identification procedure. Sample times of 0.025 and 0.03 set were used to generate the
simulation results in this paper, and sample times up to 0.1 seconds did not cause integration instability or unacceptable
degradation in the state estimates or u identification results. For such sample times and computation speeds, a 1.4 to 5.6
MFLOP processor is required; Power-PC and Pentium-based personal computers are capable of such computation
speeds. The computation burden was determined without attempting to introduce efficient algorithms in the EKF. The
EKF requires numerical integration of a symmetric covariance matrix (1); since the covariance matrix is symmetric, the
covariance propagation can be modified to incorporate computation reducing algorithms and computation burden can
be reduced.

All instrumentation (transducers and computing equipment) required to implement the numerical procedures in
real-time is off-the-shelf equipment. The instrumentation set assumed for simulation includes four tachometers, two
rate gyroscopes, two linear accelerometers, a position encoder, and a brake line pressure transducer. The field test data
instrumentation set included a brake line pressure sensor for each wheel in addition to the other sensors. A static load
transducer can be included to improve performance as vehicle loads change. The measurement noise associated with
the transducers assumed for the simulation is given in Table 4 along with the variance measured from raw field test
data. With the exception of the wheel tachometers, the transducers assumed in simulation results were of similar quality
to those used by VRTC to collect field test data, The wheel tachometers assumed for simulation were of lower quality.
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TABLE 4 Measurement noise variance for transducers
Signal Variance used in simulation Variance measured [6]
Accelerations, (ax and ay) 0.05 (m/s2)2 0.018 to 0.08 (m/s2) 2

Wheel angular velocities 0.1 (rad/s) 2 0.0012 to 0.0029 (rad/s) 2

Angular rates (r and p) 0.0001 (rad/s) 2 0.000012 to 0.00023 (rad/s) 2

In addition to the required instrumentation, a vehicle model, along with parameters given in Table 1 must be
available. The four-wheel (eight degree-of-freedom) vehicle model used in the EKF proved to be adequate for
estimating tire forces, and it is not difficult to determine parameters for such a model. While the eight degree-of-
freedom model provides wheel slip estimates at each wheel that can be used for AVCS, it is possible to perform the
road friction estimation procedure using a lower-order vehicle model, such as the five degree-of-freedom “bicycle”
model of (6). This would reduce processor computation requirements. An analytic tire model is required for road
friction identification, and parameters for the vehicle’s tires are required for this model. The tire parameters for the field
test vehicle in this study were provided by VRTC based on their own in-house tire testing. The robustness study
showed a small degradation in road friction estimate (_+0.05 error) when tire model contained error; however, the
robustness study considered only mismatch based on two different sets of tire parameters. Since tires differ
significantly from vehicle to vehicle, and even similar tires manufactured by different companies can differ, tire
parameters must be available for every manufactured tire on the market in order to implement a road friction
identification procedure that can detect small changes in road friction. Nevertheless, it is also possible to implement the
road friction identification algorithm as a qualitative driver safety aid simply by requiring the procedure to distinguish
between “low”, ”medium”, and “high” road friction coefficients. In this case, the hypothesis set may contain only three
possible values of road friction to distinguish between, a lower-order vehicle model can be used, and the algorithm will
be more robust to vehicle and tire parameter uncertainties.

PLANS FOR IMPLEMENTATION
In an effort to promote visibility of the numerical procedures developed in this project, results of Stage 1 of the IDEA
project have been published in two conference proceedings (15,16), and results of Stage 2 will be reported in a Society
of Automotive Engineers paper (17). One or more comprehensive papers will be prepared for journal publication. Road
friction estimation has immediate application to the development of driver safety aids or warning devices in which
control of a vehicle is not removed from the driver (18). In addition, results are of interest to tire manufacturers and
research groups seeking to understand and model tire force and vehicle dynamics interactions. This final report will be
made available to all parties who have expressed interest in receiving it in order to develop at least one partnership with
a research group or company that expresses interest in further evaluation and/full scale implementation an ITS product
or AVCS based on this study.

Before proceeding with full scale testing it is recommended that evaluation of the EKF and road friction
identification procedures performed using field test data be extended to include processing of field data from different
road surfaces. In addition, field test data from “normal” driving involving stopping, turning comers, and following road
curvature should be considered in addition to open-loop fixed steering/braking inputs provided by VRTC.

CONCLUSIONS
This feasibility study provides numerical techniques that can be used in ITS products and AVCS that aim to improve
vehicle safe operation and vehicle driveability. The EKF and road friction estimation procedures evidence performance
and robustness qualities necessary for incorporation in a commercial product. Simulation results show that parameters
necessary for making and implementing intelligent driving decisions can be determined using these algorithms, and
AVCS that incorporate filtering algorithms can potentially improve vehicle stability and handling qualities. Processing
of field test data ranging from modest braking and pure steering inputs to extreme maneuvering provide additional
evidence of reliable algorithm performance. The numerical technique for determining road friction works well for a
variety of vehicle inputs ranging from normal (non emergency) stopping from highway speeds or turning and braking
on a city road to inputs encountered during emergency maneuvers; however, for very small inputs, such as those that
corresponding to a highway lane change or slow changes in velocity, tire forces are not large enough to determine road
friction. Both simulation and field test data results show that the range of applicability of the EKF is not limited by the
size of the tire forces, rather EKP performance is excellent for all maneuvers considered.

The results of this study have immediate application to the development of driver safety aids or warning devices in
which control of a vehicle is not removed from the driver. Advanced vehicle control systems can also be developed based on
the numerical procedures. The algorithms also have potential application to other cases not considered in this
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study, including friction identification during traction, avoidance of driving on road surface where friction varies from
side to side, and design of traction control systems.
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NOTES
1. VRTC measures road friction using standard ASTM procedures on a regular basis; ho wever, the reliability of these
data are questionable (13), and therefore, comparisons to these one-time measurements of road friction were not made
in this project. Instead, general comparisons are made based on the results of a comprehe nsive road friction study given
in (14).

2. Field test data for the braking maneuver and steering maneuver depicted in Fig. 4 and  Fig. 2 1 contained a bad wheel
angular velocity sensor on one of the rear wheels. Because wheel slip for this wheel could not be estimated accurately,
the tire forces generated by this wheel were disregarded in the road friction estimation.
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