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EXECUTIVE SUMMARY

Information required to make intelligent driving decisions depends on many factors, changes continually, and must be
continually updated. Both during routine driving and emergency situations, Intelligent Transportation Systems (ITS)for
automated and driver-assisted control must know whether a vehicle is capable of performing a required maneuver
before implementing or proposing the maneuver; if information on which ITS decisions are based is inaccurate, the
system may fail to choose the safest action Much ITS research has focused on methods of making driving decisions
based on uncertain information. In addition, prior Advanced Vehicle Control System (AVCS) research has shown that
feedback of signals such as wheel slip and wheel slip angle can provide significant performance gains over control
systems currently used in some vehicles; however, such signals cannot be measured using current technologyThis
project bridges the gap between proposed I TS decision-making methods and proposed ACV'S by providing numerical
techniques for determining information necessary to make and implement intelligent driving decisions. The results
have application to ITS products for automated driving, emergency intervention, and driver safety aids. In addition, the
numerical techniques provide feedback signals that make implementation of AVCS feasible. This study demonstrates
that attention to the accuracy of decision information can result in superior ITS and AV CS system performance.

A crucia parameter governing vehicle motion is the tire/road-surface coefficient of friction. Vehicle stopping
distance, safe following distance, safe speed, and lateral maneuverability all depend on this uncontrollable parameter.
Road friction governs the tire forces, or forces that cause deceleration and traction and that prevent a vehicle from
“spinning” during a panic maneuver. While other important parameters governing vehicle motion can be measured
using transducers, there is currently no method to measure or otherwise determine road friction. In the absence of a
“road fiction sensor”, this project aims to estimate road friction based on measured vehicle motion. Figure 1 shows a
conceptual block diagram in which road friction and resulting decision and control parameters are estimated for ITS
decision logic and AVCS. The major components of this project appearing inside the dotted lines include a set of
transducers, an Extended Kalman Filter (EIW), a Bayesian Hypothesis Selection algorithm, and a Vehicle Parameter
Determination block. The EKF provides feedback signals that can be used in braking andractive control systems. The
filter outputs aso include tire force estimates that are used in the Hypothesis Selection procedure to estimate road
friction from a set of possible values ranging from 0.25 (icy road) to 0.9 (dry asphalt). Road friction and vehiclenction
are used in the Vehicle Parameter Determination block to predict decision parameters. Decision logic can then be used
to command steering, braking, and throttle inputs that enact the vehicle control systems.

The IDEA investigation described here is a feasibility study conducted to develop and validate the EKF andBayesian
Hypothesis Selection algorithms using both computer simulation and field test data. For the simulation study, noisy
transducer measurements are constructed from simulated vehicle motion. These measurements serve as inputs to the
EKF. Performance of the algorithms is assessed by comparing simulated vehicle motion and true road coefficient of
friction to estimates of these variables for a variety of vehicle steering and braking inputs. Results of this task
demonstrate excellent tracking ability of the EKF and Hypothesis Selection procedure for a broad range of simulated
vehicle inputs and road conditions. Figures 2 and 3 show example results of the EKF and road friction identification,
respectively, for a panic braking and steering maneuver on a variable friction road surface similar to what may be
encountered on a cold, icy day. Tracking ability of the EKF is excellent (Figure 2) and the road friction identification
procedure responds nearly instantly to sudden changes in road conditions (Figure 3). The study proved the EKF to be
robust to reasonably expected uncertainty in vehicle load, tire modeling, and center-of-gravity location, and worst-case
error in the road friction estimate when modeling uncertainties were assumed was 0.10. Example decision parameters,
such as stopping distance and brake power required to achieve a target speed were determined from road friction along
with typical uncertainties in these parameters. Performance benefits of proposed AV CS were assessed by simulation as
well. A simulated slip control braking system showed straight-line stopping distances up to 25% lower than avehicle



Field test data provide a low-cost method of verifying results of the simulation studies. Example EKF and road friction
identification results from processing field test data are shown in Figure 4. Figures 2 and 3 show algorithm
performance for severe inputs. It is necessary that the algorithms also perform well for modest steering and braking
inputs that are encountered during normal driving. Figure 4 shows road friction estimates and longitudinal force
estimates from field test data for a 0.37g straight line braking maneuver from 55 mph on a dry road surface. The same
maneuver was simulated on a road surface with p = 0.88. Consistency between simulation and test data results and
known typical values of road friction for dry asphalt indicate that road friction identified is reasonable for the test track
surface. The ability to process field test data collected from on-board transducers demonstrates that current sensing
technology can be used to implement the algorithms developed.

The conceptual IDEA product represented in Figure 1 includes on-board transducers and a microcomputer. Required

transducers include four wheel angular velocity tachometers, two accelerometers, two rate gyroscopes, a minimum of

one brake line pressure sensor, and a steering wheel angle sensor. A processor capable of five million floating-point
operations per second is required to implement the numerical techniques. This is requirement is satisfied by current
personal computer technology. The project findings clearly demonstrate the ability of the numerical techniques
developed to provide information necessary for ITS and AVCS product development.



IDEA PRODUCT

Intelligent Transportation Systems (ITS) require dynamic information concerning safe vehicle operation during every
driving situation; a system must know whether a vehicle is capable of performing a required maneuver before making
driving decisions. This project provides quantitative techniques for determining information necessary to make and
implement intelligent driving decisions. The results have application to the following:

1) Developing I TS products for automated driving, emergency intervention, and driver safety aids; and

2) Implementing AV CS to improve vehicle stability anddrivability.

Processing algorithms developed in this project determine road coefficient of friction. Road friction can be used to
estimate other parameters, such as stopping distance, brake power required to stop, and vehicle maneuverability, required to
make driving decisions. In addition, the algorithms provide feedback signals that can be used to design AV CS that increase
vehicle stability and handling qualities.

CONCEPT AND INNOVATION

The numerical procedures developed in this project are based on extendedKaman filtering, a nonlinear adaptive filtering
method (1). Similar methods have been used successfully in analogous problems concerning modeling of aircraft dynamics
(2,3). The adaptive filter requires a dynamic model of the vehicle and data that is gathered continually from sensors on board
the vehicle. Ground vehicle motion depends largely on the tire forces, or forces that cause deceleration and traction and that
can prevent a vehicle from losing lateral stability or “spinning” during severe maneuvers. The tire forces are nonlinear, and
they depend on uncontrollable factors, such as tire/road-surface coefficient of friction (u), tire pressure and wear, and vehicle
loads. While the latter parameters can be measured using standard sensors, there is currently no way to measure or otherwise
determine u. In this project, the tire forces and motion are determined using extended Kalman filtering and measurements
from standard off-the-shelf sensors. The forces and motion serve as inputs to aBayesian Hypothesis Selection procedure that
compares the estimated forces and motion to outputs of a tire force model to determine the correct u from a set of
hypothesized values. Road coefficient of friction is extremely important to predicting stopping distances, safe following
distances, and maneuverability; given an estimate of CL, information required to make on-the-spot driving decisions can be
determined.

This project is unique in its focus on providing high-quality information for decision-making and feedback control
using transducers and computer technology that are currently available. While research by other investigators has considered
ITS decision-making methods (43, there is little current research on providing the information required to make intelligent
driving decisions. Such information depends on many factors, changes continually, and must be continually updated. A “road
friction transducer”, while useful for many ITS products, would be difficult to design at best. The methods developed in this
project provide the necessary road friction estimate without requiring a road friction transducer and at the same time supply
signals required for AVCS. Prior AV CS research has shown that feedback signals such as wheel slip, wheel slip angle, and
vehicle velocity give performance gains over control systems currently used in some vehicles (6,7,8); however, these signals
also cannot be measured using current sensor technology mounted on-board the vehicle. The EKF aso provides such signals
making it possible to commercially implement vehicle control systems that increase safety and maneuverability

INVESTIGATION

Two project stages were conducted as part of this investigation. The objective of Stage 1 was to develop and validate
adaptive filtering algorithms using computer simulation. An eight degree-of-freedom model of a 1990 Ford Taurus (9)
and an analytic tire force model (10) were used to simulate true vehicle motion from which noisy sensor measurement
histories were constructed. The measurement histories served as inputs to the estimation algorithm. A variety of
steering and braking maneuvers ranging from modest to severe were simulated to determine EKF and road friction
estimation performance over a broad range of driver inputs, A study was conducted for open-loop operation of a
braking system that incorporates the algorithms to assess robustness to reasonably expected uncertainties in the system
model. Examples of parameters required for ITS decision making were determined along with typical parameter
uncertainties. Potential benefits of the algorithms devel oped to advanced feedback control were assessed by quantifying
performance gains in simulated braking control systems that incorporate the algorithms devel oped.

Stage 2 of the project involved a fina verification task using recent field test data for a 1994 Ford Taurus from the
National Highway Traffic Safety Administration’s V ehicle Research and Testing Center (VRTC) in East Liberty, Ohio.
For this task, the computer model of the vehicle was replaced with actual field test dataand the algorithms were verified
to the extent possible using that data. This stage provided alow cost method of verification using existing data before



launching an applied testing and full-scale evaluation project. The final product of the second stage included expanded
verification of the algorithms developed in Stage 1 and readiness to initiate real-time implementation and evaluation.
Implementation requirements were assessed based on transducers assumed for simulation, transducers used to collect
field test data, and computation requirements.

All simulation and field test data processing was performed using MATLAB v4.1 (11). Appendix A gives the
vehicle equations of motion used for simulation and extended Kalman filter implementation equations. Table 1
provides vehicle parameters for the simulated vehicle and test vehicle. Figure 5 defines the sign conventions and
parameters for the eight degree-of-freedom vehicle model. The remainder of this section details the investigation and

results of each project stage.

TABLE 1 Vehicle simulation model and field test vehicle parameters

Parameter Simulation mode!l | Field test vehicle
Distance: cg to front and rear axle, Lf, Ly 12,15m 0.92,1.77m
Distance: sprung mass cg to vehicle cg, e 0.198 m -0.033 m
Distance: roll axis to sprung mass cg, h 0.183 m 047 m

Front & rear track width, tf, tr 1.56, 1.54 m 1.56 1.53 m
Wheel radius, Ry (hyf, hyr) 0.32m 0.31 m
Front & rear roll center height, hf, hy 0.277,0.017 m 0.13,0.11 m
Sprung mass, mg 1702 kg 1290 kg
Front and rear unsprung mass, myf, Myy 812,916 kg 98.1,79.5kg
Moment of inertia about yaw axis, I 2526 kg-m* 2798 kg-m’
Moment of inertia about roll & yaw axes, Ixz 61.7 kg-m® 0 kg-m®
Wheel moment of inertia, Iy 1.07 kg-m? 0.99 kg-m®
Sprung mass moment of inertia about roll axis, Ixxs 489 kg-m> 683 kg-m>

Development of Adaptive Filtering Algorithms

Estimation of vehicle motion and tire forces that serve as inputs to the road friction identification block of Figure 1 is
performed using an Extended Kalman Filter (EKF) (7). The purpose of the EKF is to estimate vehicle motion, or state
from an incomplete, noise corrupted measurement set. The vehicle state vector (x(f)) components are vehicle
longitudinal and lateral velocity (vx and vy), four wheel angular velocities (ofl, ofr, ©rl, ©rr), yaw rate (r), roll rate (p),
and roll angle (¢). The vehicle estimation model used by the EKF includes the equations of motion of the vehicle given
in App. A, but requires no tire force model or knowledge of road coefficient of friction. Instead, tire forces are treated
as unknown parameters, and the state vector x(f) is augmented to include differential equations for each force to be
estimated (72). Careful study of the equations of motion shows that the longitudinal tire forces at each wheel (Fxfl,
Fxfr, Fxrl, Fxrr) and front and rear per axle lateral tire forces (Fyf, Fyp) can be determined using a sensor set that does
not require direct measurement of tire forces. A second-order random walk model is appended to the vehicle equations
of motion to model each unknown force:

s -

¥o represents the force to be estimated, yj is its first time derivative, and w,, is random, white noise. Appending
second-order random walk models for tire force to be estimated results in a 21st-order estimation model. Denoting
estimated variables as (7) and the nonlinear vehicle equations of motion as f(x(f),F(f),u(?)), the augmented nonlinear
differential equation that models the vehicle in the estimator is

N 201 RO, Fo, u¢ R
N T
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where A is a block-diagonal matrix, £ 5 (#) is the augmented state vector, and ¥(#) is the output reconstructed based on
the estimation model and the state estimate. A discrete-time extended Kalman filter is implemented by integrating eq. 2
and a continuous-time matrix Riccati equation to propagate the state and error covariance estimates, computing the
filter gain matrix, and updating the state and covariance estimates based on the measurement residual (7,12). Slip,



slip angle, and velocity estimates (8, &, ¥) at each wheel are derived kinematically from the state estimate. Details
concerning EKF implementation are given in Appendix A.

Determining Road Coefficient of Friction

A nominal tire force model can be constructed by using analytic modeling techniques (70) or by regressing EKF force
vs slip data at fixed normal force and road surface (72). Such a model provides longitudinal and lateral tire forces as
functions of slip, slip angles, normal force, , and wheel velocities. With a nominal tire force model available, p can be
estimated recursively by statistically comparing the forces estimated by the EKF to those that result from the tire force
model for a particular p. Figure 6 represents this procedure. Given a tire model and its inputs, the outputs,
longitudinal and per axle lateral forces, are nondimensionalized by their respective normal forces (Fz = [Fzfl Fzfr Fzrl
Fzr]) to define the normalized tire force vector F:

F = [Fxnfl Fxnfr Fxnrl Fxnrr Fynf Fynrl = 7(s, . Fz,v,1) 4)

The function 7 in eq. 4 represents the nonlinear tire force model. Denoting# as the EKF estimate of the true tire force
vector, the conditional probability density function of £ given p is

piF | k1= pUF TG, & By, 9, 0] = Grampmze V2 F DT -1 6)

Equation 5 expresses the probability density of obtaining the forces ¥ given a particular value of p. Pisannxn
covariance matrix, and n is the size of vector F. The EKF estimates of slip, slip angle, and wheel velocity, along with
estimates of the normal force at each wheel serve as inputs to the tire force model given an hypothesized | to compute
the probability in eq. 5. Given J hypothesized values of p, the most likely value is computed at each sample time using
Baye's rule (7). At time #, the conditional probability of hypothesis y1; given Fy is

prifr |w 1Prly |Fy 1]

Prly; |Fr]==; ©)
ZprlFr 1w 1Pl 1Fr-1]
j=1
The most likely value of p from among the hypothesized values is then given by a weighted sum:
J
fix = L Prlyy 1Fr]y M
=1

fiz represents the estimated value of road friction. The algorithm starts by specifying the set of hypothesized values and
the initial conditional probabilities Pr[y; |Fo]. If no a-priori knowledge of road friction is available, each hypothesized
value is given an initial equal conditional probability of being true. The most likely value is determined by updating the
probabilities at each sample time using eq. 5-7. Since the hypothesis vector includes discrete values of the continuous
variable p, the true value of road friction may not match an hypothesis. In this case, the conditional probabilities of
two hypotheses around the actual value of p may contribute to the weighted sum in eq. 7, or, the conditional probability
of a single hypothesis closest to the underlying value may converge to 1, while other conditional probabilities approach
zero. In this case, the worst-case error for the p estimate is less than +Ap, where Ap is the increment between
hypothesis values.

Using the method above, p estimation is separate from the EKF, and p estimation results do not affect state
estimates directly. The EKF provides state estimates for feedback control and for determining p . Once p is
estimated, information such as peak slip, minimum stopping distance, and lateral maneuverability can be determined
for ITS decisions. However, because the two tasks are separate, state estimates can be used for feedback before the p
estimate converges. This scenario is vital for good stability and robustness properties.

Stage 1 Simulation Results

Evaluation of the Extended Kalman Filter

Pure steering, pure braking, and combined steering and braking maneuvers of varying severity were simulated for
evaluation of the EKF in Stage 1. Tracking ability during emergency situations was determined by simulating an open-
loop panic maneuver on a road with several sudden changes in p. Figure 2 shows the results; here, the braking input is
Tp = 3000 N-m, and the front axle steering input is 8f = 0.15 rad, corresponding roughly to a 135 degree handwheel



angle. Theroad friction coefficientism=0.3,0 # t<0.5sec, m=0.85, 05 #t<15sc, m=0.3, 1.5 #t <225 sec, and m=
0.5, 2.25 # t < 3.0 sec. The EKF dlip, zip angle, and force estimates (dashed lines) approximate the actual trajectories (solid
lines) well, even in the face of abrupt changes in mand severely nonlinear tire forces. The steering and braking inputs in
Figure 2 are severe, particularly for the low friction road surface, causing all four wheels to lock. Because it is important to
know vehicle parameters before an emergency situation ensues, it is important for the EKF to perform well during nhormal

driving as a vehicle performs routine stops and turns. Figure 7 shows example EKF results for less severe braking (0.25g
longitudinal deceleration) and steering (0.459 peak lateral acceleration) on a m= 0.825 road surface. The inputs correspond
roughly to a turn and stop maneuver from highway speed, as in exiting a freeway onto an off ramp. Tracking of the actual

forces by the EKF shown in Figures 7a and 7b is excellent. The results presented in Figures 2 and 7 represent two extremes
of maneuvering considered for evaluation of the EKF; inputs between these extremes were considered as well, with excellent
estimation results . Force, dlip, and slip angle trajectories provided by the EKF are used below to determine m

Evaluation of road coefficient of friction estimation

The road coefficient (m) identification procedure requires a covariance matrix, P, hypothesis set, and initial estimates of
conditional probabilities, Pr[mj |Fk ]. Diagonal components of P serve as weighting factors, enabling the user
emphasize particular components of the tire force vector in the selection algorithm. For instance, during pure braking, P
= diag([0.01 0.01 0.01 0.01 1.25 1.25]) places equal emphasis on each on the longitudinal forces and less emphasis on
the per-axle lateral forces. For pure steering maneuvers, P is selected to place more emphasis on lateral forces. The
hypothesis set is m= [0.25 to 0.85] in 0.05 increments. Computation burden per hypothesis is small, and a hypothesis
set with small increments produced good results. Equal probability of each hypothesis being true was selected at t = O,

i.e., there is no a prior knowledge of m The conditional probabilities where not allowed to drop below € = 0.00001,
enabling the algorithm to respond quickly to sudden changesin m

Figure 8 shows the road coefficient of friction estimate, normal forces, and Pr[mj |Fk ] histories for the trajectory of
Fig. 2. Tracking of the actual road coefficient of friction is excellent. The condition probability (Pr[mj |[Fk ]) histories
show that the algorithm quickly converges to two hypotheses around the actual p, while the remaining probabilities
become small. The algorithm responds instantly when u changes suddenly. Figure 7c shows identification results for
the more modest turn and stop maneuver. While convergence of the road friction estimate is slow, compared to the
severe maneuvering case, the algorithm does converge to within one hypothesis of the actual road friction, m= 0.825.
The actual road friction here is modeled as a random constant whose mean value is 0.825, and the mean value does not
correspond to one of the hypothesized values. Primary importance for mestimation during modest maneuvering is not
the settling time of convergence, but that the mestimate represents actual road friction.

Figure 7 reveals limiting behavior of the road friction identification algorithm. While EKF performance is excellent
for all maneuvers considered, road friction identification ranges from very difficult, for extremely “small” inputs to very easy
for “large’ inputs. The behavior can be explained in the context of Figure 9, which shows normalized longitudinal and lateral
forces as a function of mbased on an analytic tire force model (10). At low dip ratios and dip angles typical of small input
maneuvers, it is difficult to distinguish between curves of fixed m since the force-dip relationship is linear and is nearly
independent of m Hence, the midentification algorithm performs very well above dip ratios of approximately 0.05 and has
some trouble distinguishing between hypotheses for smaller dip ratios. Similar behavior is apparent for pure steering inputs
that generate dlip angles less than approximately 0.1 rad (Figure 9b). To further assess the midentification agorithm, a
variety of steering and braking inputs were considered on a variety of simulated road surfaces. Figure 10 shows example
results. In Fig. 10a-d, actual values of mmatch one of the hypothesized values and in Fig. 10e-f actual values of mdo not
match one of the hypothesized values. In Fig. 10a-d, the estimated mconverges to the actual value in all except one case, and
the worst case 5% settling time is 0.73 sec. In Fig. 10e-f, msettles to a hypothesized value just greater than or just less than
the actual value; hence, the estimated mis always within 9.05 (one hypothesis) of the actual m The single case that does not
converge can be explained in the context of the tire force curves, as the corresponding dslip ratios are small (below 0.04).
At dlightly higher dip ratios that are still below that corresponding to peak longitudina force, the algorithm performs
well. midentification for the pure steering maneuver exhibits a high settling time largely because the corresponding dlip
angle response is dow; Figure 9b shows that for small dip angles, it is aso difficult to distinguish between m
hypotheses.

Modeling Requirements and Robustness

The midentification procedure requires a vehicle model (for the EKF) and tire force model. The tire force model is
likely to be uncertain, as it depends on experimental and/or analytic modeling, and it can change over time with
uncertain tire pressure and wear. Some vehicle model parameters are also likely to be uncertain, as vehicle load (mass)
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depend on the number of passengers, fuel mass, and cargo mass. Uncertainties in vehicle load affect the center-of-gravity
location, sprung mass, and moment of inertia parameters given in Table 1. In the results presented above, the tire force model

used in the midentification procedure was identical to the tire force model used to simulate vehicle motion, and the vehicle
parameters assumed in the simulation model matched the estimation model. A simple robustness study was conducted by
mismatching the smulation and estimation tire models and vehicle load. Significant mismatch in the tire model was

introduced by selecting a tire for the midentification procedure that did not match that of the actual vehicle. In addition,

worst-case vehicle load uncertainty was introduced; the vehicle load assumed in the simulation corresponds to driver-only
conditions, and the estimation model assumed a fully loaded vehicle. Figure 11 shows the EKF results for the traectory of
Figure 2 when these uncertainties are introduced. Load uncertainties are reflected in the mismatch between estimated
(dashed) and actual (solid) signals. The longitudinal force trajectories follow actual forces extremely well, while lateral force
estimates show a modest bias. All other estimated variables remain largely unaffected by the parameter uncertainties
considered.

Load uncertainty has the potential to cause significant performance robustness problems in road friction
identification because the procedure depends heavily on knowledge of the normal forces to normalize longitudinal and
lateral tire forces. A solution to these concerns is to include a static load sensor in the transducer set to measure the
static sprung mass load (msg). midentification results in the face of tire model and load uncertainties are presented in
Figure 12. Two cases are considered in Figure 12. The dotted line shows the m estimate for load and tire model
uncertainties, where the normal force estimate is based on the uncertain load (i.e., assuming no static load transducer).
The dashed line gives the mestimate when the normal force is based on a transducer measurement of static load, while
other load parameters (center-of-gravity location, sprung mass, and moment of inertia) remain uncertain. Sensitivity of
the procedure to normal force uncertainties is significant at high values of m causing up to 0.15 error in the mestimate
(dotted line). For errorsin other load parameters and tire model error the mestimate converges to within one hypothesis
of the actual value (dashed line).

AVCS Performance Benefits

State estimates from extended Kalman filtering provide feedback signals that can be used to design vehicle control systems
that are substantially different from current technology. Possible control systems include dlip control tractive and braking
systems, tire force feedback systems, and full state feedback systems. In this study, performance benefits of such systems
over existing vehicle control system technology are considered. The emphasis of this task is not on control system design, but
on demonstrating possible performance gains if the EKF and midentification algorithms were available to a controller.
Typical control benefits are assessed by comparing the performance of four braking systems: 1) no anti-lock braking system
(ABS) (open-loop braking system); 2) a vehicle with ABS that cycles between two dlip values (ABS); 3) a vehicle with dip-
control braking, assuming feedback of perfect wheel dip signals and no disturbance inputs (PRY ideal); and 4) a vehicle with
dlip-control braking, assuming an EKF provides dip estimates for feedback (PID/EKF). The first system represents that
available on the magjority of current vehicles. The second system is an idealization of ABS systems available as optiona
equipment on some vehicles, because ABS operation is proprietary information, this system does not necessarily model a
particular ABS, but approximates typical ABS operation of cycling the brakes to avoid wheel lock. The ABS system modeled
here is idealized because perfect wheel dip signals are assumed to be available to determine incipient wheel lock. Real ABS
systems normally base this determination on wheel angular velocity. The third system represents the “ideal”, or best possible
performance for a given “dip control” braking system (SCBS), or system that seeks to control wheel dip to a certain value.
System 3 cannot be implemented, since dlip cannot be measured directly. The last system represents achievable performance
using a stochastic dlip control braking system modeled in Figure 1. Here, dlip setpoints for the PID/EKF system are generated
based on a mestimate and nominal tire model, and a simple PID controller (12) maintains the setpoint. For straight-line
braking, the setpoint corresponds to the peak slip value, or dlip corresponding to maximum longitudinal force. Figure 13
shows an example of actual and estimated peak dip setpoints for a controlled braking maneuver on a m= 0.5 road surface,
and straight line stopping distances from 55 mph for m= 0.3 and m= 0.85 are shown in Fig. 14. The peak dip estimates
approximate actual peak dlip very well until the last 0.5 set of the trgjectory, where velocity approaches zero and signal-to-
noise ratio in the dip estimate increases. Figure 14 shows that feedback of a dip estimate introduces no noticeable
performance degradation over an ideal SCBS. The PID/EKF stopping distances are 11% to 25% lower than those of systems
with no ABS, and 5.5 to 6.5% lower than the simulated ABS system, representing significant potential gains. Since the
simulated ABS system is based on cycling between two slip values and assumes dlip is known without error, actual ABS may
not perform as well asthe ABS simulated here, and performance gains of dlip control systems may be higher.

Degrees of latera maneuverability can be achieved in a SCBS by adjusting the slip setpoint; operating at the “peak
dip” maximizeslongitudinal force at the expense of lateral force, while operating below the peak dlip increases lateral



force. Current ABS systems that cycle around peak slip can lose lateral stability in some situations. Figure 15 compares
the four braking control systems for a combined steering and braking maneuver on a m= 0.85 road surface. The dip
setpoints for the PD controllers are adjusted to give similar maneuverability as the simulated ABS system. With no
control, the wheels lock, and lateral forces are extremely small. The ABS system loses stability for the emergency
maneuver considered. The PID systems are able to sustain the same lateral maneuverability as the ABS system with no
loss of stability, achieving peak longitudinal and lateral accelerations of approximately 0.6g. There is little difference
between the paths of the ideal and PID/EKF vehicles, indicating no loss in performance due to slip setpoint estimation
and dlip estimate feedback. These results show possibilities for significant improvement in vehicle lateral stability using
AV CSthat incorporate the numerical procedures devel oped.

A nominal ABS that cycles between two dlip valuesis limited adjustability of lateral maneuverability. Achievable
ranges of lateral maneuverability are given in Fig, 16 for the PID/Ideal and PIINEKF systems and two different road
conditions. The tradeoff between longitudinal and lateral acceleration is determined by adjusting the dlip setpoint as some
percent of the peak dip value estimated. Operating at “100 % peak dip” corresponds to maintaining a value of dip that
maximizes longitudinal force. At less than 100% peak dlip, the dip setpoint is below the value that maximizes longitudinal
force, reducing available stopping force and increasing lateral forces. For each road surface, variations in longitudinal and
lateral accelerations are indicated by the small differences between the paths of the stochastic braking control system and the
ideal system. These plots demonstrate how well the vehicle can follow an intended path using an AVCS.

Decision Parameter Determination

Figure 13 gives an example of the type of information that can be derived knowing m Here, the value of dlip corresponding to
peak longitudinal force, or “peak dip” is derived from alook up table given the EKF dlip and dip angle estimates, the static
normal forces, and the mestimate. The peak dlip value can be used as a control setpoint for traction control , braking control ,
or stability augmentation. Other parameters can be derived from the mestimate that play an important role in ITS decision-
making. This section gives examples of such parameters and their uncertainties.

Point-mass kinematics provides a simple means of estimating minimum stopping distance or safe velocity as a
function of mand vehicle load; for a given braking control system, road coefficient of friction corresponds to a maximum
achievable deceleration, from which stopping distance from current velocity is predicted. When mis known perfectly, the
maximum error in predicted stopping distance from highway speeds based on this method is 0.93 m, over arange of mfrom
0.3 to 0.85; maximum error occurs at t = 0, and it was determined by simulating controlled braking maneuvers assuming
perfect feedback of dlip signals. When mis estimated, the error in minimum stopping distance estimate depends on the error
in the p estimate. Figure 17 shows the minimum stopping distance estimate (solid line) as a function of road friction for
velocities from 10 m/s to 25 m/s. The dashed lines represent uncertainties in the stopping distance estimate for uncertainty in
p estimate of _+.05 (one hypothesis). Another important parameter that can be assessed based on the mestimate is the brake
ratio, or measure of brake power required for a rear vehicle to avoid an accident with a front vehicle (4). Assuming a target
velocity, v, and aninitia velocity v,, for the rear vehicle, the brake ratio can be defined as

V= vy
2dDx (8)

where d is the maximum achievable decel eration and Dx is the separation distance between vehicles. dislinearly related to m
Figure 17b gives an example of brake ratio and uncertainty bands based on _+.05 error in the m estimate for a vehicle
traveling at 55 mph approaching a vehicle traveling at 30 mph, for two separation distances. An ITS can use information such
asthat presented in Fig 17b to determine the probability of safely performing a braking maneuver or the safe vehicle velocity
required to minimize the probability of an accident. For example, on alow friction road (m= 0.3), the brake ratio for Dx = 75
m is between 0.77 and 1.05, indicating that there is a possibility of exceeding the total available braking power if a straight

line braking maneuver is performed. For the larger separation distance, just over half of the available braking power (between
0.46 and 0.63) is required to achieve the target velocity. Uncertainty intervals decrease with increasing road friction, as
indicated in the figure.

br=

Sage 2 Results

Field test data were provided by VRTC for Stage 2 evaluation (13). All maneuvers were open-loop, fixed-input runs
conducted by VRTC as part of their standard vehicle testing and modeling procedures. A single straight-line braking
maneuver was provided from a late 1994 test data set, and straight line braking maneuvers ranging from 2 m/s 2 to the
maximum deceleration possible for the test vehicle (approx. 8.5 m/s?) were provided based on recent (August 1995) field
testing. Pure steering data provided by VRTC included ramped steering maneuver data and J-turn (constant steer



input) data. Severe combined braking and steering data also were provided. All data were collected from maneuvers on
dry asphalt; no data were available for wet pavement.

Since the simulation model is replaced by actual field test data for Stage 2 evaluation, time histories of actual
vehicle state and road friction do not exist for evaluating the EKF and m estimate results. In the absence of actua
signals with which to compare estimated signals, the Stage 2 results must be judged based on consistency of the road
friction estimate to that expected for dry asphalt and for consistency with simulation results. For a sample of field test
cases, a simulation was conducted for identical inputs, assuming a true underlying road friction coefficient
approximately equal to that identified by processing field test data. The resulting simulated motion was compared to
field test data results. The hypothesis set for field test data processing was p = [0.25 to 0.9] in 0.05 increments, as
processing results indicated the possibility of friction coefficients greater than 0.85 for field test data. The field test
vehicle parameters are given in Table 1.

Pure braking results

Figure 4 shows the EKF tire force estimates and road friction estimates for a straight line braking maneuver from
highway speeds on dry asphalt?. The average and peak decelerations for this maneuver are 0.35g and 0.4g, respectively,

and road friction converges to 0.90. This maneuver is typical of normal braking from highway speeds in which the
wheel dlip vs longitudinal force relationship remains in the linear region of the tire force curves (Fig. 94). In the

absence of lateral inputs, lateral forces (not shown) are small. While the underlying road friction and tire forces for this

maneuver are unknown, results can be judged by simulating an identical maneuver on a high friction road surface and

comparing forces estimated from field test data to simulated forces. The dashed trgjectories in Figure 4 provide
simulation results for identical inputs and atrue underlying road friction of 0.88. The mean values of the simulated and

estimated longitudinal forces are nearly indistinguishable, indicating excellent EKF results. Table 2 summarizes the

ERR force estimate results for this run. Column 3 of Table 2 gives the correlation coefficient between simulated tire
forces histories and EKF force estimates from field test data processing. Road friction estimates for simulated and field
test data are 0.88 and 0.9, respectively. Measurement of road friction at similar test facilities on dry asphalt indicate
typical road friction values for dry asphalt of 0.85 to 1.0 (14). Figure 18 shows results of processing straight line
braking field test data for decelerations of 2 m/s?, 3 m/s?, 5 m/s, 7.5 m/s?, and maximum deceleration achievable with
the test vehicle's ARS system active. In each case, processing of field test data begins when the brakes are applied. The
transient response of the braking system isindicated by the time it takes for the forces to reach a steady-state value. The
steady-state value of longitudinal tire force estimates increases with deceleration, as expected. With the exception of
Figure 18e, dlip ratios at each wheel (not shown) remain approximately constant. In Figure 18e, with the ARS system

active, the brakes begin to cycle on and off when the system detects incipient wheel lock, as reflected in the force
response. Road friction identification results are consistent with what is expected for dry asphalt, with the exception of
the 2 m/s” (0.29) braking maneuver. Here, the tire forces are simply too small to distinguish road friction; this is

consistent with Stage 1 simulation findings, which indicated limitations to road friction identification for small tire

force inputs. As the braking input and resulting forces increase, the speed of the transient road friction response

improves.

TABLE 2 Comparison of simulation and field test data resultsfor 0.35g braking

Variable Mean Mean value, Correlation
Value, field test data | coefficient
simulation | estimate

Front left long, Force, Fxfl 1570N 1572 N 0.99

Front right long, Force, Fxfr | 1606 N 1609 N 0.99

Rear |eft long, Force, Fxrl 1306 N 1309 N 0.96

Rear right long, Force, Fxrr | 898 N 903 N 0.98

Pure steering results

Figure 19 shows estimated lateral forces and road friction from field test data for a slowly increasing steering input at a
vehicle velocity of aproximately 17.5 m/s (39.1 mph) along with simulated forces and simulated road friction estimate
for the same inputs®. This maneuver was also conducted on dry asphalt. The simulated data assumed an underlying road
friction of m= 0.88. The steering input for this maneuver isramped to 1.36 rad (78 degrees) over the duration of the test
run. The correlation coefficients between simulated and estimated lateral tire forces are 0.98 and 0.92 respectively, for
the front and rear axles indicating good EKF performance. In both simulation and field test data results, the road

friction estimate convergence is slow because of the slow slip angle and lateral force response,
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revealing small steering input limitations to road friction estimation. The lateral acceleration reaches-0.4g at the time
road friction convergesto 0.9. Figure 20 shows estimated road friction for more recent (June 1995) slowly increasing
steering input field test data at three velocities: 12 m/s (27 mph), 22 m/s (49 mph), and 32 m/s (72 mph). The steady-
state road friction estimates are 0.83,0.89, and 0.90. Figure 19 also shows estimated |ateral forces and road friction for a
0.4g Jturn (constant steering input) at 11.2 m/s (25 mph). Again, agreement with road friction expected for dry asphalt
isgood for all pure steering cases considered.

Combined braking and steering results

Figure 2 1 shows the EKF and road friction estimation results for hard braking and steering field test data near the
limits of vehicle capabilities (peak a, = 0.99 and peak a, = 0.8g). For the maneuver considered, the vehicle's antilock
braking system is enacted, as indicated by the oscillatory brake line pressure measurements and resulting tire force
estimates. For the EKF simulation road friction was assumed to be 0.88. Correlation coefficients for the forces
simulated and those estimated from field test data given in Table 3 show excellent agreement between the simulation
and field test data for three of four longitudinal forces. For the simulated run (dashed lines) the front |eft wheel locks,
and the corresponding longitudinal tire force saturates. The lateral forces generated for field test data are greater in
magnitude than simulated lateral forces. Force and dip comparisons of simulated and field test results for identical
inputs indicate that either the actual road friction is higher than that assumed for ssmulation, or the tire force model
used in road friction identification is not accurate in predicting tire forces near the limit of vehicle performance. (The
peak accelerations for the simulation were a, = 0.8g and peak a, = 0.69.) Nevertheless, results of processing this test
run indicate good EKF performance and road friction identification results for severely nonlinear tire forces and
significant transients in the braking inputs.

TABLE 3 Comparison of simulation and field test data resultsfor severe braking and turning
Variable Correlation
coefficient
Front left long, Force, Fxfl 0.31
Front right long, Force, Fxfr | 0.98
Rear left long, Force, Fxrl 0.91
Rear right long, Force, Fxrr 0.95
Front per-axle lat force, Fyf | 0.88
Rear per-axle lat force, Fyr 0.73

Computation, Sensing, and Modeling Requirements

The EKF requires 131K floating point operations (FLOPS) per sample time to propagate the state estimate (8 nonlinear

and 13 linear equations) and a 21 x 21 state covariance matrix using fourth-order Runge Kutta integration. The m
identification algorithm requires 600 FLOPS per sample time per hypothesis, including calls to the analytic tire force

model to evaluate eq. 6. For 13 hypotheses, a total of approximately 139K FLOPS per sample time are required to
implement the EKF and midentification procedure. Sample times of 0.025 and 0.03 set were used to generate the
simulation results in this paper, and sample times up to 0.1 seconds did not cause integration instability or unacceptable

degradation in the state estimates or u identification results. For such sample times and computation speeds, a 1.4 t0 5.6

MFLOP processor is required; Power-PC and Pentium-based personal computers are capable of such computation
speeds. The computation burden was determined without attempting to introduce efficient algorithms in the EKF. The

EKF requires numerical integration of a symmetric covariance matrix (1); since the covariance matrix is symmetric, the

covariance propagation can be modified to incorporate computation reducing algorithms and computation burden can

be reduced.

All instrumentation (transducers and computing equipment) required to implement the numerical proceduresin
real-time is off-the-shelf equipment. The instrumentation set assumed for simulation includes four tachometers, two
rate gyroscopes, two linear accelerometers, a position encoder, and a brake line pressure transducer. The field test data
instrumentation set included a brake line pressure sensor for each wheel in addition to the other sensors. A static load
transducer can be included to improve performance as vehicle loads change. The measurement noise associated with
the transducers assumed for the simulation is given in Table 4 aong with the variance measured from raw field test
data. With the exception of the wheel tachometers, the transducers assumed in simulation results were of similar quality
to those used by VRTC to collect field test datg The wheel tachometers assumed for simulation were of lower quality.
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TABLE 4 Measurement noise variance for transducers

Signal Variance used in simulation Variance measured [6]
Accelerations, (a, and a,) 0.05 (m/s%)° 0.018t0 0.08 (m/s") *
Wheel angular velocities 0.1 (rad/s) * 0.0012 to 0.0029 (rad/s) *

Angular rates (r and p)

0.0001 (rad/s)

0.000012 to 0.00023 (rad/s) °

In addition to the required instrumentation, a vehicle model, along with parameters given in Table 1 must be
available. The four-wheel (eight degree-of-freedom) vehicle model used in the EKF proved to be adequate for
estimating tire forces, and it is not difficult to determine parameters for such a model. While the eight degree-of-
freedom model provides wheel dip estimates at each wheel that can be used for AVCS, it is possible to perform the
road friction estimation procedure using a lower-order vehicle model, such as the five degree-of-freedom “bicycle”
model of (6). This would reduce processor computation requirements. An analytic tire model is required for road
friction identification, and parameters for the vehicle stires are required for this model. The tire parameters for the field
test vehicle in this study were provided by VRTC based on their own in-house tire testing. The robustness study
showed a small degradation in road friction estimate (_+0.05 error) when tire model contained error; however, the
robustness study considered only mismatch based on two different sets of tire parameters. Since tires differ
significantly from vehicle to vehicle, and even similar tires manufactured by different companies can differ, tire
parameters must be available for every manufactured tire on the market in order to implement a road friction
identification procedure that can detect small changes in road friction. Nevertheless, it is aso possible to implement the
road friction identification algorithm as a qualitative driver safety aid ssimply by requiring the procedure to distinguish
between “ low”, ” medium” , and “ high” road friction coefficients. In this case, the hypothesis set may contain only three
possible values of road friction to distinguish between, alower-order vehicle model can be used, and the algorithm will
be more robust to vehicle and tire parameter uncertainties.

PLANSFOR IMPLEMENTATION

In an effort to promote visibility of the numerical procedures developed in this project, results of Stage 1 of the IDEA
project have been published in two conference proceedings (15,16), and results of Stage 2 will be reported in a Society
of Automotive Engineers paper (17). One or more comprehensive papers will be prepared for journal publication. Road
friction estimation has immediate application to the development of driver safety aids or warning devices in which
control of a vehicle is not removed from the driver (18). In addition, results are of interest to tire manufacturers and
research groups seeking to understand and model tire force and vehicle dynamics interactions. This final report will be
made available to all parties who have expressed interest in receiving it in order to develop at least one partnership with
aresearch group or company that expresses interest in further evaluation and/full scale implementation an ITS product
or AVCS based on this study.

Before proceeding with full scale testing it is recommended that evaluation of the EKF and road friction
identification procedures performed using field test data be extended to include processing of field data from different
road surfaces. In addition, field test datafrom “ norma” driving involving stopping, turning comers, and following road
curvature should be considered in addition to open-loop fixed steering/braking inputs provided by VRTC.

CONCLUSIONS

This feasibility study provides numerical techniques that can be used in ITS products and AVCS that aim to improve
vehicle safe operation and vehicle driveability. The EKF and road friction estimation procedures evidence performance
and robustness qualities necessary for incorporation in a commercial product. Simulation results show that parameters
necessary for making and implementing intelligent driving decisions can be determined using these agorithms, and
AVCS that incorporate filtering algorithms can potentially improve vehicle stability and handling qualities. Processing

of field test data ranging from modest braking and pure steering inputs to extreme maneuvering provide additional

evidence of reliable algorithm performance. The numerical technique for determining road friction works well for a
variety of vehicle inputs ranging from normal (non emergency) stopping from highway speeds or turning and braking
on a city road to inputs encountered during emergency maneuvers; however, for very small inputs, such as those that
corresponding to a highway lane change or slow changes in velocity, tire forces are not large enough to determine road
friction. Both simulation and field test data results show that the range of applicability of the EKF is not limited by the
size of thetire forces, rather EKP performance is excellent for all maneuvers considered.

The results of this study have immediate application to the development of driver safety aids or warning devices in
which control of avehicleis not removed from the driver. Advanced vehicle control systems can also be developed based on
the numerical procedures. The algorithms aso have potentia application to other cases not considered in this
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study, including friction identification during traction, avoidance of driving on road surface where friction varies from
side to side, and design of traction control systems.
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NOTES
1. VRTC measures road friction using standard ASTM procedures on a regular basis; ho wever, the reliability of these
data are questionable (13), and therefore, comparisons to these one-time measurements of road friction were not made

in this project. Instead, general comparisons are made based on the results of a comprehensive road friction study given
in (14).

2. Field test data for the braking maneuver and steering maneuver depicted in Fig. 4 and Fig. 2 1 contained a bad wheel
angular velocity sensor on one of the rear wheels. Because wheel dlip for this wheel coud not be estimated accurately,
the tire forces generated by this wheel were disregarded in the road friction estimation.
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APPENDIX A: VEHICLE SIMULATION MODEL

An cight degree-of-freedom vehicle model (9) and an analytic tire force model (70) are used to simulate true motion
from which noisy measurements are constructed. The equations of motion are

Vg = vy + %(-mshrp + Fxf +Fxy) (A.D)
Yy = -vgr + o (mshp +Fyf +Fyp) (A2)

t
t = (Ixzp + FyfLf - FyrLr + (Fxficosdg - Fxfycosdg + Fyflsindq - FyfrsinSﬁ.)'f +

t 1
- + inS.g - i + A3

(Fxr1cos3y1 - FypycosSyy + Fyrlsindy Fyrrsmﬁrr)'ZI 0 (A3)
) . . 1
b =(msh (v + vyt ) +Ixzs T +mh g §+ My (A4
¢=p (A5)
. 1
of = Fxfl Rw - TIOT (A.6)
. 1
Ofr = Fxtr Rw - T - (A7)
. 1
orl = (Fxrl Rw - Tr)p - (A.8)
o = 1
Opr = (Fxrr Rw - Trop (A.9)
where
Fx1 = -(Fxficos 8 + Fyfrcos 8gp) - (Fygsin 8q + Fygsindgy) (A.10)
Fyf = -(Fxqisin 3q) + Fyqsindgy) + (Fyﬂcos 3+ FyfrCOSSfr) (A.11)
Fxr = ~(Fxr] 088y] + FyyC0s 8pyr) - (Fypysindy + Fypysindpy) (A.12)
Fyr= -(Fxpsin 8y + Fypysindpy) + (Fyycosdy + FypcosSyr) (A.13)

The state vector x(t) components are longitudinal and lateral velocity (vx and vy), yaw and roll rate 1(r and p), four
wheel angular velocities (of], ofr, @rl, ©rr) and roll angle (¢). u(®) = [8q 8¢ 87 O T Tgr Ty Tyr] ™ represents the
steer angles and braking torques at each wheel. Components of the force vector F(f) = [Fyq Fxfr Fxyl Fxrr Fya F
Fyﬂ Fyyr My] are longitudinal and lateral tire forces at each wheel and total tire restoring moment about the yaw
axis. Sign conventions are defined in Fig. 5; the remaining parameters are given in Table 1. The analytic tire model
generates tire forces and moments F(t) as a function of velocity, p, and normal tire force, given a set of tire parameters
(10). The vehicle model also includes roll and compliance steer terms (9). Roll steer is given by

5f=8fg +erd, Odr=erd ' (A.14, A.15)

8fy represents the commanded front steer angle. Compliance steer introduces additional steering components to each
wheel due to tire forces, moments, and suspension compliance. For example, the front wheel steer angles are

3f] = 6f + Kyf Fyfl + Kxf Fxfl + Kmf Mzfl, 8fr = 8f + Kyf Fyfr - Kxf Fxfr+ Kmf Mzfr (A.16,A.17)
where Kxf, Kyf, and Kmf are compliance steer coefficients due to front longitudinal force, lateral force, and restoring
moments, respectively. Similar expressions exist for the 8¢ and 8r. The vehicle model includes first-order braking

dynamics, with a time constant of 0.1 sec. For open-loop operation, a proportioning valve supplies 70% of Tp, the total
brake torque, to the front wheels and 30% to the rear wheels in the vehicle simulation model.

An extended Kalman filter (1) is used to estimate the tire forces and vehicle state histories. The vehicle estimation
model used by the filter includes the equations of motion, but requires no tire force model or knowledge of road
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coefficient of friction. Instead, the state vector x(f) is augmented to include differential equations for each force to be
estimated. Following (3), an integrated random walk is chosen to model each force, allowing the forces to vary with
time as necessary:

; 0 1]/y0
YO =
o )

Y1

yo represents the force to be estimated, yj is the first time derivatives of the force, and wy is random, white noise.
(Other higher-order Gauss-Markov models were evaluated, and good results were obtained for a variety of models.)
Equation A.18 is appended to the state equations for each of the four longitudinal forces and two per-axle lateral forces,
resulting in a 21st-order estimation model. Denoting the estimated variables as (7) and the nonlinear equations of
motion as f(x(¢), F(f),u(f)), the augmented nonlinear differential equation that models the system in the state estimator is

. [Ro] [eotoun]
xa®=|. |= n =fA(xA (), u(@®) (A.19)
F) N

where A is a block-diagonal matrix with blocks defined by the matrix in eq. A.18, and X A(®) is the augmented state
vector. Tire restoring moment is neglected in the estimation model. The estimation model retains roll and compliance
steer terms given above. In addition to steering and braking inputs, the vehicle is assumed to be subject to Gaussian,
white disturbance. The nonlinear measurement equation used by the extended Kalman filter is

z() =[r pof Of Of O ax ay]T=h[X(f),F(1),ll(f))] +n() (A.20)

where a, and a,, are the longitudinal and lateral accelerations, respectively, and n(#) is Gaussian, white measurement
noise. Sensors afe contained on the vehicle, and the set includes readily available sensors, such as accelerometers, rate
gyros, and tachometers. In addition, it is assumed that the control inputs are measured. A hybrid extended Kalman
filter is implemented by integrating eq. A.20 and a continuous-time matrix Riccati equation from time f;,_; to time #;
to propagate the state and error covariance (P) estimates, computing the filter gain matrix, and updating the state and
covariance estimates based on the measurement residual (7):

AR = Zpp () + [ Z.; ) fARA(D), u(D)dr (A21)
Py() =Py + [ ﬁz I{F(T)P(r) +P(FT(9) + LavpLT}dr (A22)
Ky =P8, T [H, P,OH,T + Ryl (A.23)
X AR = XA%0) + Ky, [z - haGGAz().u®)] (A.24)
Py(+) = [1- Ky Hy [Py (A.25)

Nonlinear integration procedures are implemented using fourth-order Runge Kutta integration. Matrices F and H are
computed by linearizing eq. A.19-A.20 around X A=) at each time step. The disturbance input matrix, L, is constant,
since the disturbances enter linearly. The equations governing the tire forces in the estimation model are driven by the
measurement residual [z - h(z AU ineq. A.24. The EKF is initialized with a state estimate corresponding to
the true state and a large covariance matrix. Slip and slip angle estimates are derived from the state estimate for use in
road friction identification and/or feedback control laws.
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